Dynamical dark energy in cosmological holography

Maurice H.P.M. van Putten
Sejong University

Colloquium May 29 2015
Kyungpook National University
Outline

Observations of accelerated expansion

Information and temperature in holography

New gravitational physics from the Hubble horizon

Confrontation with data: dark energy and dark matter

Conclusions
Expanding Universe

![Graph showing the relationship between velocity and distance](image)

Figure 1

Velocity- Distance Relation among Extra-Galactic Nebulae.

Hubble, E., 1929, PNAS, 168, 73

\[v = HD \]
Distances from expansion velocities

$z \approx 0.1$

$D \approx 400$ Mpc
The universe is shaped by the mean density relative to the critical density.
3-flat Friedmann-Lemaître-Robertson-Walker (FLRW) line-element

\[ds^2 = -dt^2 + a^2(t) \left(dx^2 + dy^2 + dz^2 \right) \]

\[H = \frac{\dot{a}}{a}, \quad c = H R_H \]

\[R_H = \frac{c}{H} \cong 4.3 \text{ Gpc} \]

An essentially 3-flat causally connected patch in an extended universe bounded by the Hubble horizon. (Our future domain of dependence.)
Probing accelerated expansion

\[
q \equiv -H^{-2} \frac{\ddot{a}}{a}
\]

\[
\dot{H} = \frac{\ddot{a}}{a} - H^2 = -H^2 (1 - q)
\]

\[
H = \left[\frac{d}{dz} \left(\frac{d_L(z)}{1+z} \right) \right]^{-1}
\]

\[
H_0 d_L = z + \frac{1}{2} \left(1 - q_0 \right) z^2 + \cdots
\]

\[
\mu(z) = m - M = 5 \log_{10} \left(\frac{d_L}{10 \text{ pc}} \right)
\]

Kinematic measurement of \(q(z) \) using \(d_L(z) \) only (independent of cosmological modeling, assuming standard candles)

Semiz, I., & Camlibel, K., 2015, arXiv:1505.04043v1

Frieman, Turner & Huterer 2008, ARAA 46 385
Accelerated expansion

Kirshner, R.P., 1999, PNAS, 96, 4224

Perlmutter et al. (1999), Riess et al. (1998)

$H_0 = 67.80 \pm 0.77, \quad \Omega_\Lambda = 0.692 \pm 0.010$

$q = \frac{1}{2} \Omega_M - \Omega_\Lambda < 0 \quad \text{(three-flat)}$
Observed deceleration parameter

\[q = -H^2 \frac{\ddot{a}}{a} : \quad q(z) = q_0 + z \left(\frac{dq}{dz} \right)_0 + O(z^2) \]
Origin of accelerated expansion

The 3-flat FLRW line-element gives a viable geometry of post-inflation cosmology

A dynamical evolution of $a(t)$ is conceivably provided by general relativity, originally set-up as a four-covariant embedding of Newton’s law of gravity

Accelerated expansion requires the presence of negative pressure energy

Health warning:

the scale $H_0 c \sim 1 \text{ Angstrom/s}^2$ of cosmological gravitation is exceedingly weak, far below familiar Newtonian gravitational attraction
Observed scales of acceleration

galactic to cosmological scales

\[a_0 \leq 1 \, \text{Å} \text{s}^{-2} \]

solar system

Quick fix?

Four-covariant stress-energy tensor (in null-space of Bianchi identity)

\[\Lambda g^b_a = \Lambda \begin{pmatrix} 1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{pmatrix}, \quad w = \frac{p_{DE}}{\rho_{DE}} = -1, \quad q = -1 \]

\[T^{DE}_{ab} = -\Lambda g_{ab} \]
While the extant data are fully consistent with LambdaCDM, they do not exclude more exotic models of dark energy in which the dark energy density or its equation-of-state parameter vary with time.

Frieman, Turner & Huterer 2008, ARAA 46 385

Phenomenological descriptions

\[w(a) = w_0 + w_a (1 - a) = w_0 + w_a \frac{z}{1 + z} \]

\[q(z) = \frac{1}{2} \sum_i \Omega_i(z) \left[1 + 3w_i(z) \right] \]
New gravitational physics?

According to general relativity, cosmological evolution is open to any four-covariant feature.

The Hubble horizon is a four-covariant feature unique to cosmology (all inertial observers agree on the same Hubble radius).

Any back reaction thereof on a(t) will be four-covariant, i.e., is allowed.

\[a_0 = \frac{cH_0}{2\pi} \approx 1 \text{ Å s}^{-2} \]
The Universe as a hologram?

General relativity:
thermodynamic limit of quantum spacetime

Information:
encoding microphysical distribution of matter on two-dimensional screens

Entropy from no-hair theorem:
classical limit hiding information of event horizons

Vacuum temperature:
surface gravity of Rindler horizon

‘t Hooft 1993 gr-qc/9310026
Suskind 1995 JMP 36 6377
Bekenstein, 1981, PRD 23, 287
Verlinde 2011 JHEP 4 29
van Putten 2012 PRD 85 064046
van Putten 2015 IJMPD 24 150024
Vacuum temperature: temperature of nearby H

- Black hole horizon
- Rindler horizon
- Mass infall (gravitational collapse)
- Observer at constant acceleration
Symmetric 2-sheet embedding of a black hole

van Putten 2010 CQG 27 075011

\[ds^2 = -\tanh^2\left(\frac{\lambda}{2}\right)dt^2 + 4M^2 \cosh^4\left(\frac{\lambda}{2}\right)(d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\phi^2) \]

bifurcation horizon:

\[A(\lambda) = 16M^2 \cosh^4\left(\frac{\lambda}{2}\right) \]
Black hole(s) in isotropic coordinates

\[ds^2 = -N^2 dt^2 + \Phi^4 \left(d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\phi^2 \right) \]

\[\Delta \Phi = 0 : \quad \Phi = 1 + \frac{M_1}{2|r - r_1|} + \frac{M_2}{2|r - r_2|} \]

Horizon area perturbations at turning points
Exact solution BH binding energy from Gibbs’ principle

Entropy from the “no hair” theorem (classically hiding maximal information)

\[S_{AH,i} = \frac{1}{4} A_{H,i} f(\xi_1, \xi_2), \quad A_{H,i} = 16\pi M_i^2, \quad \xi_i = \frac{M_i}{a}, \quad f_i \equiv 1 + \xi_j \ (i \neq j) \]

Thermodynamic temperature

\[T_{AH,i} = \left(\frac{\partial S_{AH,i}}{\partial M_i} \right)^{-1} = 4 \left(\frac{\partial A_{H,i}}{\partial M_i} f_i(\xi) + A_{H,i} \frac{\partial f_i(\xi)}{\partial M_i} \right)^{-1} \equiv \frac{4}{f_i(\xi)} \left(\frac{\partial A_{H,i}}{\partial M_i} \right)^{-1} \]

\[dS_{AH,i} = \frac{1}{4} A_{H,i} df_i(\xi) \]

\[T_{AH,i} dS_{AH,i} = A_{AH,i} \left(\frac{dA_{H,i}}{dM_i} \right) d\log f_i(\xi) \]

Gibbs virtual perturbations at the same total energy-at-infinity

\[-dU = \left(T_{AH} dS_{AH} \right)_1 + \left(T_{AH} dS_{AH} \right)_2 \]

\[U = -\frac{1}{2} M_1 \log f_1(\xi_2) - \frac{1}{2} M_2 \log f_2(\xi_1) \]
Binding energy from Gibbs’ principle

\[x = \cos \theta, \quad s_i = \Phi^2 \left(\cos \lambda, \frac{\rho \sin \lambda}{\sqrt{1 - x^2}}, 0 \right) \tan \lambda(x) = -\sqrt{1 - x^2} f'(x), \quad \rho(x) = \rho_0 e^{f(x)} \]

\[\lambda'(x) + 4 \rho \frac{\partial \rho}{\Phi} + 2 + 4 \tanh \lambda \frac{\partial \rho}{\Phi} + \frac{\tan \lambda}{\tan \theta} = 0, \quad \rho' = \rho \tan \lambda, \quad \frac{dA_H}{d\theta} = 2\pi \frac{\Phi^4 \rho^2}{\cos \lambda} \sin \theta \]
Newton’s law at turning points

At a binary separation a:

$\xi_i = \frac{M_i}{a}$: \quad $A_{AH,i} = 16\pi M_i^2 f(\xi_j)$

$A'(\rho) = 0$: \quad $\rho = \frac{M_2}{2} \left(1 - \frac{M_1}{2a} \right)$

$A_i(\rho) = 2\pi \int_0^\pi \Phi^4 \rho^2 \sin \theta \, dx = 4\pi \left[1 + \frac{M_2}{\rho} + \frac{M_1}{a} + \frac{M_2^2}{4\rho^2} + \frac{M_1 M_2}{2 \rho a} + \frac{M_2^2}{4 a^2} \right] \rho^2$

$A_{AH,2} = 16\pi M_2^2 f(\xi), \quad f(\xi) = 1 + \frac{M_1}{a} + \cdots$

Newton’s law

$S_{AH,2} = \frac{1}{4} A_{H,2} f(\xi), \quad A_{H,2} = 16\pi M_2^2, \quad f(\xi) = 1 + \frac{M_1}{a} + \cdots$
Signal horizon in cosmology

if they remain within a Hubble radius distance

\[D^+ (\Sigma_t) \]

(c)2015 van Putten
Hubble flow through cosmological horizons

$$ds^2 = -dt^2 + a^2(t) \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right)$$

de Sitter universe:

Hubble outflow

radiation dominated universe:

Hubble inflow

godesic observer

const spherical
surface area
Gibbons-Hawking temperature of de Sitter space

\[ds^2 = -dt^2 + a^2(t) \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right) \]

\[H = \frac{\dot{a}}{a}, \quad R_H = H^{-1}: \quad ra = \sigma \left(0 \leq \sigma < R_H \right) \]

\[
\begin{align*}
k_B T &= \frac{\hbar a_0}{2\pi c} = \frac{H_0 \hbar}{2\pi} \\
\end{align*}
\]

Gibbons-Hawking’s redshifted
Unruh temperature

\[a_0 = a_{\text{loc}} \frac{d\tau}{dt} = \sigma H^2 : \quad \lim_{\sigma H \to 1} a_0 = H \]

\[\Lambda = 8\pi \rho, \quad dE = \rho_\Lambda A_H dR, \quad S = \frac{1}{4} A_H : \quad T = \left(\frac{dS}{dE} \right)^{-1} \]

Stationary point of Helmholtz free energy
Surface gravity of Hubble horizon

\[\sigma = ra : \]

\[ds^2 = -dt^2 + a^2 dr^2 + \sigma^2 \left(d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right) = h_{ab} dx^a dx^b + \sigma^2 d\Omega^2 \]

\[\begin{cases} \partial^c \sigma \partial_c \sigma = 0 \\ \kappa = \frac{1}{2} \nabla^2_{(2)} \sigma \end{cases} \]

Akbar & Cai 2007 PRD 75 084003

\[a(t) = a_0 t^n, \quad \rho = rt^{\frac{n}{2}}, \quad R_H = H^{-1} = \frac{1}{n} t : \quad \kappa = (2n - 1)t^{n-1} \]

Vanishing surface gravity in radiation dominated limit:

\[a = a_0 \sqrt{t}, \quad \kappa = 0 \quad \Rightarrow \quad T_H = 0 \]
Thermodynamic scales in gravitation

low temperature gravitation

\[a_0 \leq 1 \text{As}^{-2} \]

high temperature gravitation

(independent of Hubble horizon)

Different approaches:

Conventional: evolution $a(t)$ governed by Einstein equations

Holographic: GR subject to thermodynamics of Hubble horizon

\[L_0 = \frac{c^5}{G} \quad \rho_0 = -\frac{L_0}{cA_H} \]

\[R_H = \frac{c}{H_0}, \quad A_H = 4\pi R_H^2, \quad \rho_c = \frac{3H_0^2}{8\pi G} \]

\[\rho_\Lambda = -p_0 = \frac{L_0}{cA_H} = \frac{2}{3} \rho_c : \quad \Omega_\Lambda = \frac{2}{3} \]

Derives also from entropic forces (Easson et al. 2011, Phys. Lett. B 696 273)

Overall scale is remarkable for present Universe, but in contradiction with BBNS
Unruh (1976), Gibbons & Hawking (1977), Cai & Kim (2005)

\[k_B T_H = \frac{\hbar a}{2\pi c}, \quad a = Hc\left(\frac{1-q}{2}\right): \quad k_B T = \frac{H\hbar}{2\pi}\left(\frac{1-q}{2}\right) \]

(The associated wave length < Hubble radius)

\[\Omega_\Lambda = 2\left(\frac{1-q}{2}\right) = \left\{0, \frac{1}{2}, \frac{2}{3}\right\} \]

in radiation, matter and Lambda dominated epochs

\[\Lambda = 8\pi\rho_\Lambda = (1-q)H^2 = H^2 + \frac{\ddot{a}}{a} \]
Mixed first and second order dark energy

\[G_{ab} = 8\pi T_{ab} - \Lambda g_{ab} \]

\[G_{ab} = 8\pi T_{ab} - H^2(1 - q)g_{ab} \]

Singular perturbation of the Hamiltonian energy constraint

\[\tilde{G}_{ab} \equiv G_{ab} + \left(\frac{\ddot{a}}{a} \right) g_{ab} = 8\pi T_{ab} - H^2 g_{ab} \]

3-flat FRW line-element in 3+1:

\[h_{ij} = a^2 \delta_{ij}, K_{ij} = -a \dot{a} \delta_{ij} : \quad (^3 R - K : K + K^2 = 16\pi \rho_m + 16\pi \rho_\Lambda \]

Now 2nd order in time:

\[\frac{\ddot{a}}{a} = 2H^2 - 8\pi \rho_m : \quad c^{-1} \dot{R}_H = 1 + q = -1 + 3\Omega_m \]

Normalized:

\[\tau = H_0 t : \quad a(t) \rightarrow a(\tau), \quad \omega_m = \frac{\rho_0}{\rho_c}, \quad h = \frac{H}{H_0} \]

\[\frac{\ddot{a}}{a} = 2h^2 - 3\omega_m \left(\frac{a_0}{a} \right)^3 \]
Cosmological evolution of deceleration parameter

\[z_t(q_0) = 0.43 - 0.24(1 + q_0) \]
Plane of \((q_0, (dq/dz)_0)\)

123-sigma contours of “Silver + gold” samples of Riess et al. 2004

\(\Lambda CDM\)

dynamical dark energy
Accelerated expansion $q_0<0$ is secure

Systematic uncertainties exist:

“gold” : Lambda CMD
“silver” : dynamical Lambda
“red” and “blue” Type Ia’s (Milne et al.2015)

Improved understanding will be crucial to differentiate dynamical and static Lambda

If dynamic, this will open a great new window to “Beyond Einstein Cosmology”
This late-time cosmology leaves BBNS unaffected \((q=1)\) with a cosmological density of DM:

\[
\Omega_m = \frac{1}{3} (2 + q) \cong 0.3 - 0.4
\]

Observed DM clustering on intermediate scales
(resolution \(\sim 10\) Mpc)

Vikram et al., 2015, astro-ph/1504.03002v2
Conclusions

Observed \((q_0, H_0)\) → observed values of \((z_t, (dq/dz)_0, a_0)\)

- Dynamical DE in a singular perturbation of GR
- Crucial is improved understanding of Type Ia data
- For late-time cosmology, BBNS unaffected \((q=1)\) with

\[
\Omega_m = \frac{1}{3} (2 + q) \cong 0.3 - 0.4
\]

- clustering of light CDM on super-galactic scales, not needed on galactic scales due to a modified Newton’s law:

van Putten (2014), arXiv:1411.2665v2

\[
\beta = \frac{T_0}{T} : \quad \text{high beta: Milgrom’s law} \quad \text{low beta: Newton’s law}
\]